Gribbin (1990: 123-4):
There is no model of what the atom and elementary particles are really like, and nothing that tells us what goes on when we are not looking at them. But the equations of wave mechanics (the most popular variation on the theme) can be used to make predictions on a statistical basis. … Quantum theory does not say what atoms are like, or what they are doing when we are not looking at them. Unfortunately, most of the people who use the wave equations today do not appreciate this and only pay lip service to the rôle of probabilities. … [Students] learn to think of the waves as real, and few of them get through a course in quantum theory without coming away with a picture of the atom in their imagination. People work with the probabilistic interpretation without really understanding it …
Blogger Comment:
From the perspective of Systemic Functional linguistic theory, both 'the atom and elementary particles' and the scientific model of them are construals of experience as meaning; the former are phenomena, the latter metaphenomena (phenomena about phenomena).
When no observations are being made, no experience is being construed as meaning ('what atoms are like and what they are doing').
The wave equations of quantum mechanics are metaphenomena: phenomena about the phenomena construed of experience. The wave function construes phenomena as potential (wave), providing the probabilities of the phenomena as instances (particle frequencies).
No comments:
Post a Comment